

ESKİŞEHİR OSMANGAZİ UNİVERSİTY

FACULTY OF ENGINEERING and ARCHITECTURE

ELECTRICAL and ELECTRONICS ENGINEERING DEPARTMENT

COURSE INFORMATION FORM

Course Name				Course Code			
Physics II				1	151222198		
Number of Course Hours per Week						DOTO	
Semester	Theory		Practice	Credit		ECIS	
2	3		0	3		3	
Course Category (Credit)							
Basic Sciences	Engineering Sciences	g	Design	General Education		Social	
3	3						
Course LanguageCourse LevelCourse Type				ourse Type			

Course Lunguage	esuise hever	eouise 19pe
English	Undergraduate	Compulsory

Prerequisite(s) if any				
Objectives of the Course	To teach students the fundamental laws and related problem solving approaches of electricity and magnetism; hence, to provide them the conceptual materials in order to comprehend the basic scientific foundations in associated novel academic research and emerging technological advancements.			
Short Course Content	Electric charges, Coulomb's Law, electric field, Gauss's Law, electric potential, capacitance and dielectric materials, resistance and electric current, magnetic field, magnetic field sources, electromagnetic induction, Maxwell's equations.			

	Learning Outcomes of the Course	Contributed PO(s)	Teaching Methods *	Measuring Methods **
1	Acquire the theoretical knowledge and to develop an understanding on their comprehensive applications on topics in electricity and magnetism.	1, 2	1, 2, 5	А, К
2	To model and solve problems including engineering and advanced physics by using theoretical information and practical knowledge in electricity and magnetism.	3, 5	1, 2, 5, 10	А, К
3	To realize the significance of the dielectric materials on capacitors through the proper understanding of electric field, electric potential, and capacitances.	1, 2, 4	1, 2, 5, 6	А
4	Getting to know simple electric circuits. Learn about current, resistivity, and electromotor force and their impact on electric circuits.	1, 2, 4	1, 2, 5, 6	А
5	To be able to analyze electric circuits by using Kirchhoff's laws upon the foundations of conservation of charges and energy.	1, 2, 4	1, 2, 4	А
6	To learn magnetic field, magnetic force, and sources of magnetic field; hence, grasp the correlation between the moving charges and magnetism.	2	1,5	С, К
7	To be able to grasp the interconnection between electricity and magnetism; as changing magnetic field gives rise to an induced electric field, and vice versa.	2	1, 5	С, К

*Teaching Methods 1:Expression, 2:Discussion, 3:Experiment, 4:Simulation, 5:Question-Answer, 6:Tutorial, 7:Observation, 8:Case Study, 9:Technical Visit, 10:Trouble/Problem Solving, 11:Induvidual Work, 12:Team/Group Work, 13:Brain Storm, 14:Project Design / Management, 15:Report Preparation and/or Presentation

ESOGU ELECTRICAL and ELECTRONICS ENGINEERING DEPARTMENT © 2024

^{**}Measuring Methods A:Exam, B:Quiz, C:Oral Exam, D:Homework, E:Report, F:Article Examination, G:Presentation, I:Experimental Skill, J:Project Observation, K:Class Attendance; L:Jury Exam

8	To be able to comprehend that how the electricity is generated in power plants using renewable energy sources by referring to the Maxwell's equations.	8, 10, 11	2, 4, 7	A, K
9	To grasp the impact of electricity and magnetism in modern technology and especially in electronics by starting from the visualization of the atomic structure and proceeding through step by step evolution of the developments of the utilization of free electrons.	2, 8	1, 4, 7	K
10	To develop a capacity for analytical thinking and to get prepared for advance coursework related to the electricity and magnetism.	1, 2	1, 2, 11, 13	A, K

Main Textbook	Young H.D., Freedman R.A. University Physics with Modern Physics, 14 th Edition (2015), Pearson.
Supporting References	Halliday, D., Resnick, R., and Walker, J. (2008). Fundamentals of Physics (8th Edition).John Wiley & Sons, Inc.Serway, R.A., Beichner, R.J., Physics For Scientists and Engineers with Modern Physics (2007), Harcourt College Publishers.
Necessary Course Material	

	Course Schedule				
1	Atomic structure and electrical charges.				
2	Coulomb's Law.				
3	Electric field.				
4	Gauss's Law .				
5	Electric potential.				
6	Capacitances.				
7	Dielectric materials.				
8	Mid-Term Exam				
9	Electric current, resistance, and electromotor force.				
10	Direct-current circuits.				
11	Kirchhoff's laws.				
12	Magnetic field and magnetic force.				
13	Sources of the magnetic field.				
14	Electromagnetic induction.				
15	Maxwell's equations and electromagnetic waves.				
16,17	Final Exam				

^{*}Teaching Methods 1:Expression, 2:Discussion, 3:Experiment, 4:Simulation, 5:Question-Answer, 6:Tutorial, 7:Observation, 8:Case Study, 9:Technical Visit, 10:Trouble/Problem Solving, 11:Induvidual Work, 12:Team/Group Work, 13:Brain Storm, 14:Project Design / Management, 15:Report Preparation and/or Presentation

^{**}Measuring Methods A:Exam, B:Quiz, C:Oral Exam, D:Homework, E:Report, F:Article Examination, G:Presentation, I:Experimental Skill, J:Project Observation, K:Class Attendance; L:Jury Exam

Calculation of Course Workload				
Activities	Number	Time (Hour)	Total Workload (Hour)	
Course Time (number of course hours per week)	14	3	42	
Classroom Studying Time (review, reinforcing, prestudy,)	14	1	14	
Homework				
Quiz Exam				
Studying for Quiz Exam				
Oral exam				
Studying for Oral Exam				
Report (Preparation and presentation time included)				
Project (Preparation and presentation time included)				
Presentation (Preparation time included)				
Mid-Term Exam	1	2	2	
Studying for Mid-Term Exam	1	15	15	
Final Exam	1	2	2	
Studying for Final Exam	1	15	15	
-	Т	otal workload	90	
	Total	workload / 30	3	
	Course	ECTS Credit	3	

Evaluation				
Activity Type	%			
Mid-term	40			
Quiz				
Homework				
Final Exam	60			
Total	100			

	RELATIONSHIP BETWEEN THE COURSE LEARNING OUTCOMES AND THE PROGRAM OUTCOMES (PO) (5: Very high, 4: High, 3: Middle, 2: Low, 1: Very low)				
NO	PROGRAM OUTCOME				
1	Adequate knowledge of mathematics, science and Electrical and Electronic Engineering; ability to practice theoretical and practical knowledge of these areas into modeling and solving problems of Electrical and Electronics Engineering.	5			
2	Ability to identify complex engineering problems in Electrical and Electronics Engineering and related fields, for this purpose having skills to formulate, select, and apply appropriate methods.	5			
3	Having skills to apply modern design methods to design a complex system, equipment or product that should work under realistic conditions and constraints and satisfy specific requirements concerning the Electrical and Electronics Engineering.	4			
4	Having skills to develop, select and apply modern techniques and tools needed for Electrical and Electronics Engineering applications, skills to use information technology effectively.	2			
5	Skills to design and conduct tests, collect data, analyze results, and interpret data for the experimental investigation of Electrical and Electronics Engineering problems.	4			
6	Ability to function effectively as an individual and as a member of teams within the discipline and in multidiscipline areas.	2			
7	To communicate and represent effectively in both Turkish and English.	2			
8	Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.	3			
9	Understanding of professional and ethical responsibility.	1			
10	Information on project management, change management and risk management practices, awareness on entrepreneurship, innovation and sustainable development.	1			
11	Information about universal and societal effects of engineering applications on health, safety and environment; awareness of the legal consequences of engineering solutions.	1			
_					

LECTUTER(S)					
Prepared by	Arş. Gör. Dr. Selçuk Temiz				
Signature(s)					

Date:06.06.2024